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Abstract

In the field of medical diagnostics, deep learning approaches have proven to be accurate tools that

yield valuable findings. They've been employed by medical experts as a form of assistive

technology, particularly in imaging segmentation and classification challenges. In some diagnostic

tasks, they have also been able to surpass human’s performance. The ‘black box' structure of

these models is of major concern. The goal of explainability research is to determine which

characteristics have the greatest influence on a model's choice. This project implements a pipeline

of model agnostic explainability techniques both in 2D and 3D for medical images. The use-case

data is a collection of CT chest scans as 3D nifti files from the MosMed COVID-19 publicly

available dataset. The task being explained in 2D explainability is an implementation of the SHAP

algorithm (SHapley Additive exPlanations). The 3D explainability is an implementation of a gradient

class activation map algorithm using Tensorflow and Keras. This algorithm generates heat maps

that highlight class activation regions. Two backend models are used for testing the explainability

methods. One is a 3D CT binary classification model detecting COVID-19, used for generating 3D

heatmaps, and the other is a pneumonia VGG16 based model calculating relevant image patches

using the SHAP algorithm. By analyzing the resulting heat maps and outputs, this explainability

pipeline aids the efforts of model understanding, debugging, and trust in AI systems across various

stakeholders. This has been shown through the results, discussing many insights (including lung

abnormality activations) that would otherwise be missed if an explainability component was not

used. If applied, this pipeline limits bias, leads to higher-quality model development, and

documenting. As more and more AI systems are applied in society, the importance of adding

explainability as a common task in the development of these systems will only get greater. The

project tackles an urgent issue such as COVID-19 detection and appeals to the effort of making

COVID-19 research more applicable in clinical settings.
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1. Introduction

In this introductory chapter, there are three sections. In the first section, the background of the field

of explainability and interpretability is presented. It includes some important definitions and

concepts. The second section looks into literature and scientific work done in imaging explainability

as this area is in the narrower scope of the project. The third section describes the novelty and

what we have done in our work. It also includes the hypothesis and aims of my project with added

background about the data used.

1.1 What are explainability and interpretability and why are they needed ?

In several areas, deep learning and machine learning technologies have shown to be useful and

accurate tools. These techniques have proven to be effective in fields such as medical, technology,

law, and finance. Deep learning models naturally make decisions like a “black box” with input and

output, without too much detail of what is going on in between. This is a major source of concern.

Humans find it difficult to visualise predictions since they are typically non-intuitive for humans.

This lack of transparency and knowledge of predictions can result in deep learning models being

misconstrued or in failure and unexpected real-world performance. In sensitive medical use cases,

a circumstance like this can have an impact on stakeholders, business decision-making,

customers, and even patients.

Explainable artificial intelligence (XAI) is a field in machine learning which addresses the

understanding of decision making of artificial intelligence systems. This is an active research topic,

especially the explanations for the aforementioned ‘black box’ models. Sometimes the term

interpretable artificial intelligence is used interchangeably with explainable artificial intelligence,

although there is a slight difference between the two. Interpretability tends to explain models which

already have an existing decision-based structure such as decision trees, linear regression,

random forests etc. Explainability studies the explanations of “black box” models such as deep

neural networks. The study of Explainable AI (XAI) looks to recognize and understand ,how models

make their decisions. A deeper insight into the naming schemes, terminology and taxonomy of

explainability methods is mentioned in (Singh et al., 2020). In Figure 1.1 the main taxonomy of
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Explainable AI methods is visualized. As this research is new, this terminology is not “set in stone”

and is sometimes used interchangeably.

Fig 1.1 - Explainable AI main taxonomy from (Singh et al., 2020). The graph shows the types of explainability
techniques in regards to their function and interaction with the model they are explaining. The techniques are
divided into four groups.

Research in explainable AI is not new and has been present in the past. However, there has been

a recent spike in research interest in explainable AI from 2015 onwards. This is attributed to the

increasing numbers of applied machine learning systems deployed in various areas. As the

inclusion of such systems becomes a bigger part of society, the role of explainability will get more

recognition. Another broader survey of explainability methods is done in (Das & Rad, 2020).

Why is explainability needed?

Explainable AI has many use cases and roles. Figure 1.2 shows the three main stakeholder groups

of explainable AI. This division is in terms of the role of explainability in different stakeholder

groups of the AI systems.

Fig 1.2. - Roles of explainable AI with different stakeholders. Engineers mainly use explainability to further
improve the algorithms and better understand the inner workings of the systems. Consumers and Regulators
are more concerned about trust and transparency for reports generation for compliance and impacts, source:
Google ML tech talks.
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The division of use cases is broader and explainability can have numerous use cases. Below is the

outline of some notable use cases relevant to most AI systems:

● The main use case in the explanation of model predictions is to support human

decision-making processes. More and more AI systems include humans as part of the

decision making processes especially in medical applications (Fauw et al., 2018). Having

model decisions that are reliable and transparent becomes a key aspect both for clinicians

and patients alike.

● For engineers, a sizable use case of explainable AI is debugging. Understanding model

decisions can help in corrective actions and adjustments to the algorithms. Explainability

can also help in understanding dataset biases and skews thus aiding in data collection and

model validation tasks (Xie et al., 2020).

● Explainable AI can have a meaningful role in the adoption of these technologies. This is the

case with law regulators, who need to understand model decisions but also such

understandings can enlist the trust and approval of end-users. This leads to increased

approval of AI systems and more scenarios where AI systems can be applied.

Explainability and interpretability are becoming common steps in the development of machine

learning applications. They are starting to take an important role on par with privacy, security, and

other best practices when creating machine learning-based applications. This is notable in human

first applications of deep learning (Healthcare AI Systems That Put People at the Center, 2020).

There is no clear rule on the extent of interpretability and explainability needed for AI systems to be

classified as explainable. This extent is defined by the application and the use case. The research

area of our project is medical imaging explainability, combining different elements of the

explainability use cases mentioned above. Its purpose is to offer insights to a wider group of

stakeholders.

1.2 Image explainability and COVID-19 detection

COVID-19 detection

Deep learning algorithms have been extensively used in medical imaging and showcased great

performance for specific tasks for example, the detection of COVID-19 (Dong et al., 2021) but also
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as computer-aided diagnostic tools for humans (Beede et al., 2020),(Raumviboonsuk et al., 2019).

These satisfactory performances of computer vision models have caused developments in this

research field (S. M. Lundberg et al., 2018). Multimodal neuroimage data has been used for

Altzheimer’s detection methods, a general state-of-the-art review of some of these methods is

available in (Jo et al., 2019). An active research area is present around chest scans. A big set of

algorithms tackle lung cancer problems using datasets of computer tomography imaging. Methods

of detecting and inspecting abnormal lung tissue growth are highlighted in (Hua et al., 2015). In

(Nayak et al., 2021) a review of methods for detecting lung tissue lesions characteristic of the

COVID-19 virus are shown. The detection is done using a varied set of data types but most include

imaging data. All these models show great accuracy and performance, however, they lack the

explainability component hence making their decisions difficult to explain and/or visualize. This can

be a considerable drawback in practically applying these models to the real world or including them

in high stakes real-world decision making.

SHAP (Shapley Additive exPlanations)

This is an explainability technique established on concepts in cooperative game theory (Shapley,

1951). The technique calculates importance values that are assigned to a feature of the data.

These values are calculated by averaging the marginal contributions of features considering all

possible combinations of contributions. SHAP unifies multiple different explainability techniques

(Lundberg & Lee, 2017). Another advantage of SHAP is that it builds on and improves on some

flaws of LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro et al., 2016). The biggest

differentiating impact is that SHAP, unlike LIME, has a game-theoretical assurance that guarantees

local accuracy and consistency

Gradient activation based explainability methods

One of the first ideas of explaining the ‘black box’ nature of neural networks was proposed with

Saliency maps using deconvolutions (Zeiler & Fergus, 2013). They calculate the neuron’s absolute

value of the partial derivative of the output. However, this technique is unable to distinguish the

differences between classes. Class activation maps (CAMs) are another group of commonly used

techniques. Proposed in (Zhou et al., 2016), the algorithm calculates the gradient of the output with

respect to some other network parameter. These other parameters are the input parameters in
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many cases. A problem with the classic CAM implementation is the need for a model architecture

with a global average pooling layer after the last convolutional layer. Should this not be the case,

re-training is required. There are many papers that discuss improvements of CAM. One is

(Selvaraju et al., 2020) with Grad-CAM and Guided Grad-CAM (introduced in 2016, but kept

updated). Others like (Sayres et al., 2019) with Grad-CAM++ and (Sattarzadeh et al., 2021)

propose some minor improvements for multi-class distinction problems. Further improvements are

in (Wang et al., 2020) with Score CAM. Even though many versions exist, they are all based on

calculating gradients like in GradCAM. GradCAM calculates the gradient with respect to the feature

maps of the last convolutional layer. The Grad CAM algorithm generates a ‘heatmap’ that when

resized visualizes parts of the image that are “activated” when the model makes a decision of

classifying an image to a given class. This technique is model agnostic for all differentiable neural

networks. It can also be applied to some reinforcement learning models and to also include

captioning as a form of textual explanation. No re-training of models is required to implement this

explainability technique. The code in the project follows the fundamentals of Grad-CAM but is

extended to 3D. It is based on a Grad-CAM implementation by F.I.Tushar with changes in the

backend models, pre-processing, functionality, visualizations, and gradient mapping. Other

explainability techniques for imaging tasks are reviewed in-depth in (Singh et al., 2020).

1.3 Novelty and hypothesis in this project

The work in this project is based on creating explainability pipelines for COVID detection for 3D

computer tomography scans. We noticed that gradient-based explainability techniques were not as

present with models that use 3D data, especially with Keras/Tensorflow libraries. Having this in

mind, combined with the recent rise of explainability as a subfield of machine learning (Wu et al.,

2021), an opportunity to test novel ideas in this project had risen. The urgency of COVID-19 and

the impactful role of imaging techniques are mentioned in (Dong et al., 2021). When creating this

pipeline, certain objectives were taken into account. The explainability pipeline should be model

agnostic, require no re-training or adjustments of already existing models (anyone with a trained

model for that task can use the system as a “plug and play” solution) and offer explanations for

multiple stakeholders in the explainability pipeline. That is why, besides the 3D explainability using

gradient-based methods, 2D explainability using perturbation techniques were implemented. This

7

https://www.zotero.org/google-docs/?eOoLxp
https://www.zotero.org/google-docs/?eOoLxp
https://www.zotero.org/google-docs/?3Namlm


offers a more “intuitive” understanding but also overcomes some shortcomings of the 3D

explainability techniques. Most of the Grad CAM implementations are on 2D images with models

performing object localization. Pytorch implementations of 3D Grad CAM methods such as M3D

CAM (Gotkowski et al., 2020) is a full library for 3D explainability. Other implementations tied to

specific use cases are available like using temporal convolutions (Ras et al., 2020), for Alzheimer’s

disease (Yang et al., 2018) and disease detection in plants (Nagasubramanian et al., 2019). At the

moment of writing this thesis, there were no working implementations for Grad CAM on 3D images

in Tensorflow and Keras. This is one of the motivations for novel impact through this project,

besides the impact of explainability in general. These gradient-based methods are developed and

kept up to date and their usage is still explored, with many being reviewed again after publishing.

Entire explainability systems, not just methods, are being built such as in (Spinner et al., 2019).

Furthermore, workflows that offer visually-assisted approaches are presented in (Sacha et al.,

2019). The importance of explainability in recent years is further proved by their inclusion of some

type of explainability in Covid-19 deep learning imaging methods. An apparent example for this are

(Wu et al., 2021) and (Nayak et al., 2021).

Hypothesis and aims

Hypothesis: A pipeline with 2D and 3D explainability techniques would offer visualized insights to

various stakeholders in the AI model building process.

Aim 1: Create model agnostic explainability techniques that do not require re-training and model

architecture changes.

Aim 2: Implement 3D explainability techniques by expanding 2D explainability concepts using the

Tensorflow and Keras libraries.

Aim 3: Using an explainability pipeline better understand model decisions and potential biases.

Aim 4: Use 2D explainability to overcome some shortcomings of 3D explainability.

Data exploration

The dataset used in this project is the MosMed dataset with Chest CT Scans with COVID-19

Related Findings (Morozov et al., 2020). Although only a subset of this dataset was used, it is truly

a useful resource for COVID-19 related projects. The dataset contains the resulting scans of
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computer tomography of chest organs. It contains data with radiological indications of viral

pneumonia induced by COVID-19 and data without any indications of COVID-19.

The scans consist of 3-dimensional pixels which are called voxels. The voxel is the smallest

discrete element of the image. The spatial resolution is also an important concept as it affects the

ability of viewers to distinguish between structures in the scans that are in close proximity. The

higher the resolution is, the greater this ability is (Huda & Slone, 2003). The CT image is

mathematically reconstructed from numerous views obtained when the X-ray tube is rotated 360

degrees around the patient. The voxel values are expressed in Hounsfield units (HU). They signify

the rate at which tissue absorbs or attenuates radiation. The reference point of 0 is water. These

values are usually converted to grayscale images and are used in radiological imaging. Value of

-1024 HU is black and represents air in the lungs. Fat tissue is close to -100 HU, whereas muscle

is around 100 HU. Different types of bone go from 200 HU (trabecular and spongious bone) to

about 2000 HU (cortical bone). Metal implants are usually capped at the maximum value because

they have very high Housfield unit values. These concepts were important to understand in order

to explore the data. Some of the artefacts detections and visualizations were done having this

knowledge in mind. Besides the Python packages Matplotlib and OpenCV, the software package

ITK Snap was used for data exploration, voxel histogram manipulation, and overall data

understanding. A screenshot of ITK Snap is shown in figure 1.3.3.

Figure 1.3.3 - ITK Snap screenshot of the
study_0260 from the MosMed dataset. The image
shows slices of the 3D CT scans from axial (top
left), coronal (bottom right), and sagittal (top right)
views. The image on the bottom left shows the
windowing feature which is commonly used in CT
scan explorations as it enables noticing more
nuanced details. Windowing is performed when
the intensity of the voxels is confined to a range of
values.

2. Algorithms and methods

In this section, the methods for creating the explainability pipeline are explained. This section has

three parts. The first part elaborates on the data pre-processing and the model backends. Although

the explainability techniques can be used with any differentiable neural network architecture, it is
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important to understand the details of the models which are explained. The second reviews the

explainability algorithms in detail. The third is on the pipeline of explainable techniques and the

general workflow of this project. The Github repository with a link to all the related files, code, and

outputs is available at: https://github.com/fm1320/ICL/tree/main/AstraZeneca (more in Appendix A)

2.1 Model backends and pre-processings

This section gives information on the deep learning models used for testing out the explainability

methods. Details on the training process and pre-processings are given to better understand

certain biases or anomalies that might occur in the explainability pipelines.

Pneumonia detection model (used for 2D explainability)

Data Quality

The subset of the dataset “Labeled Optical Coherence Tomography (OCT) and Chest X-Ray

Images for Classification” by (Kermany et al., 2018) is used and the model is based on a Kaggle

competition notebook by Aakash Kumar Nain from 2018 but with different training seeds. The

dataset consists of anterior and posterior chest X-ray images selected from cohorts of pediatric

patients of one to five years old from Women and Children’s Medical Center, Guangzhou. The

scans were part of the routine patient’s checkup and unreadable and low-quality scans were

removed. The annotation was done by two separate physician experts and a third one made a

grading to account for possible errors. The subset data chosen consists of 5863 images in total,

with 3875 NORMAL cases and 1341 PNEUMONIA cases. The data is highly imbalanced. The

situation of having scans from children and young women might incur bias to the model’s decisions

when the model is tested on scans of fully adult patients.

Data pre-processing and transformations

The images are converted to RGB space. Augmentation is implemented in the training data for the

under-represented class (the NORMAL class) to further balance the data and generate more

examples of the NORMAL class even though this class is still under-represented. The imgaug

library was used to implement 3 types of augmentation: random brightness change, rotation, and

horizontal flipping. Transfer learning on the first 4 layers of the VGG16 model was used with

weights from Imagnet. The other layers are left to be fine-tuned to the task.
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Covid-19 3D CNN detection model (used for 3D explainability)

Data Quality

A smaller subset of the MosMedData, Chest CT Scans with COVID-19 Related Findings (Morozov

et al., 2020) is used. This dataset has lung CT scans with COVID-19 findings, but also CT scans

without COVID-19. The CT scan findings were used as labels in creating a classifier that tries to

predict the presence of viral pneumonia. As a result, the problem is a binary classification one. The

scans are divided into five categories CT0, CT1, CT2, CT3, and CT4. CT0 consists of non-covid

samples, while CT1 to CT4 consist of Covid samples with increasing severity. In this project, the

most severe group CT4 was not used as earlier detection makes more practical sense.

Data pre-processing and Augmentations

The files are in Nifti format(.nii) from the MosMed dataset (Morozov et al., 2020). The

preprocessing functions use Keras’s official library and 3D imaging code examples. The nibabel

package is used to read the scans. For such files, Hounsfield units are used to store raw voxel

intensity values from CT images (HU). In this dataset, the range is from -1024 to above 2000.

Because we are only interested in structures inside the lung, 400 HU is utilized as a higher bound.

The overall threshold for the HU values is between -1000 and 400. The CT scans are

pre-processed according to the following steps:

- Scaling (normalization) of the HU values between 0 and 1.

- Resizing in width, height, and depth dimensions (128x128x64). Using the ndarray.zoom

function in python, If the size of the input is smaller than (128x128x64) in any dimension,

Spline interpolation of the first order is performed to have the scan in the preferred size.

This approach also preserves the distances between voxels.

Lastly, the dataset is split into train and validation subsets. For example, only 200 scans are used

for training, not the full dataset. An augmentation function that randomly rotates volumes at

different angles is used while defining the training and validation data loader. The scans are rotated

by a random angle between -20 and 20 degrees. Both the training and validation data are already

rescaled and normalized. This yields similar but different results when replicating the model as the

set-up parameters are used at random. A random seed is not specified before training too, which

influences the exact replicability of the model’s results.
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2.2 Model explainability

There are two categories of explainability techniques used in this project. The first category is

gradient-based explainability techniques (Guided class activation maps) and the second is about

perturbation based techniques like Shapley additive explanations (SHAP) based on Local

Interpretable Model-agnostic Explanations (LIME).

Class activation maps - gradient-based explainability methods

In order to understand the adapted version of Grad CAM (Selvaraju et al., 2020) implemented in

this project, a description of the general class activation mapping (CAM) algorithm will be given

followed by the Grad CAM algorithm and then the steps implemented in this project. The theory

behind the classic class activation mapping is the following as expressed by equation 1. Let:
- k-th feature map with height x, width y  of the last convolutional layer, and𝑓

𝑘
(𝑥, 𝑦)

- the k-th averaged pooled value. The score for a given class ( ) is computed as:𝐹
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(𝑥, 𝑦)

Equation 1, Source: Weizmann Institute of Science 2021, 4182 Deep Learning for Computer Vision:
Fundamentals and Applications Spring 2021

Figure 2.2.1 shows a visual illustration of this concept involving the Global average pooling of the

neural network. This is based on the concept that each feature map captures some important

feature from the image (Bengio et al., 2013). The process of generating a class activation map is

explained visually in Figure 2.2.1.

Figure 2.2.1 Each feature map is reduced to a weight (w1,w2 etc.) by a global average pooling layer. To
calculate the heatmap, a linear combination between the feature maps and weights is computed. When
feature maps are multiplied with weights, the “contribution” of each weight is returned. The score for class C
is computed as a linear combination of the feature maps with the learned weights.
(Zhou et al., 2016). Source: Weizmann Institute of Science 2021, 4182 Deep Learning for Computer Vision:
Fundamentals and Applications Spring 2021

Grad CAM is a generalized version of the already mentioned CAM in Figure 2.2.1 and the previous
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passage. The difference now is that, instead of summing a linear combination between the feature
maps and the learned weights, they propose a new term. This term is which takes into accountα

𝑘
the global average pooling of the gradients with respect to the feature maps. is the target class𝑆

𝑐
score. This term signifies neuron “importance”. The expression for this term is given as follows:α

𝑘

, where are the gradients computed via backpropagationα
𝑘

= 1
𝑍

𝑥
∑

𝑦
∑

𝜕𝑆
𝑐

  𝜕𝑓
𝑘
(𝑥,𝑦) 𝜕𝑓

𝑘
(𝑥, 𝑦)

global average pooling

Equation 2, Source: Weizmann Institute of Science 2021, 4182 Deep Learning for Computer Vision:
Fundamentals and Applications Spring 2021

In the Grad CAM paper (Selvaraju et al., 2020) it is proven that CAM is a special case of grad CAM where

when the last layer is a global average pooling layer. Also, it is stated that adding a ReLUα
𝑘

= 𝑤
𝑘
 

activation to the final expression adds better performance (Selvaraju et al., 2020). In Equation 3 a

comparison of the heatmaps calculated by CAM and Grad CAM is shown in equation 3.

       𝐿
𝐶𝐴𝑀
𝑐 =

𝑘
∑ 𝑤

𝑘
 𝑓

𝑘
               𝐿

𝐺𝑟𝑎𝑑 𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈

𝑘
∑  α

𝑘
 𝑓

𝑘
 ( )    

Equation 3, Source: Weizmann Institute of Science 2021, 4182 Deep Learning for Computer Vision:
Fundamentals and Applications Spring 2021

Having in mind the theoretical bases of the mentioned gradient-based algorithms, here are the

steps implemented in the project (adapted from F.I.Tushar’s acknowledged implementation):

1. A model is created that maps the input CT scan to the activations of the last 3D convolutional

layer as well as the output predictions of the model. The aim is to “record” the gradients when an

input scan is forward passed through an already trained model. A function is written to select the

last convolutional layer. The last layer is chosen as the most specific features of the class are

captured by that layer (this is also dependent on the backend model of choice).

2. Tensorflow’s gradient tape function is used to calculate the gradient of the top predicted class

with respect to the feature map of the last convolutional layer.

3. A guided ReLu is performed. This step offers suppression of the negative gradient activations

giving a “smoother” visual map (Springenberg et al., 2015).
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4. A weighted map of filters (according to the gradient’s importance to the top predicted class) is

multiplied by each channel in the feature map. Then, all channels are summed to obtain the

activations of the heatmap.

5. Heatmap is normalized to have voxel intensity values between 0 and 1

This was implemented in Python using Keras and Tensorflow frameworks. The details of the

versions and requirement packages are available at the GitHub repository of this project available

in the Appendix A section.

Perturbation based methods - SHAP and LIME

The SHAP explainability was implemented taking inspiration from the blog post by Tiba Razmi and

the official repository of the SHAP project but with different preprocessing, backend models,

classification task, and test data. SHAP is based on LIME, and although LIME was also tested (just

as a demonstration following the python library) SHAP was chosen because of its game-theoretical

background (Section 3 in S. Lundberg & Lee, 2017) and its better alignment with human intuition

(Section 5 in (S. Lundberg & Lee, 2017). A “black box” model example of the intuition behind

SHAP is shown in figure 2.2.2.

Figure 2.2.2 - A visualization of how SHAP works for a generic black-box model. The left-hand side shows
Age, Sex, BP, BMI as input features and the output is an arbitrary prediction (0.4). The right-hand side shows
the SHAP values colour-coded in terms of how much a feature contributes negatively (blue) or positively
(red) for the given prediction. The SHAP values can be interpreted as the impact of having a certain value for
a given feature in comparison to the same prediction if that feature had a baseline value.

In the case of the project, this intuition still applies, however, the parameters such as Age, Sex,

BMI etc. from figure 2.2.2 are image patches, and the explanation offers a map of the input image

divided into patches with the contribution of each patch being visualized. The model is trained on

2D pneumonia scans and the inference is made on the 2D slices of the 3D scans.

The implementation steps are the following:
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1. Extract a 2D slice of interest from the 3D CT scan. There is an option to do this manually or it

can be done automatically by a certain rule (voxel values, lung masks, gradient activations etc.)

2. Segment the image into superpixels in python using the simple linear iterative clustering (SLIC)

algorithm (Achanta et al., 2012) which adapts a k-means clustering approach to generate

superpixels (other image segmentation algorithms can be used too)

3. Explain each superpixel using the Kernel SHAP python library

4. Get the predictions of the 2D chest classification model for the given image and extract the top 2

predictions (in the case of the project the two possible predictions are pneumonia and

non-pneumonia but the model can be extended to multiple class classification problems)

5. Generate SHAP values and visual explanations signifying which superpixel contributes by how

much towards the given class.

2.3 Project workflow

In diagram 2.3.1 the explainability pipeline (which includes the already mentioned explainability

components) is drawn. There are two types of explanations as outputs. One is a 3D explainability

method and the other is a 2D explainability method.

Diagram 2.3.1 - The diagram shows the processing of the 3D CT scans. Firstly the 3D backend model
generates a prediction which is explained by the adapted 3D Grad CAM based algorithm. This generates the
first explanation which is a 3D heatmap of class activations. Afterwards, relevant 2D slices from the coronal
viewpoint are extracted from the 3D CT scans (This is done either manually or by selecting regions with high
activations). Then a 2D pneumonia detection backend model is used to generate a prediction for the 2D
slice. After the SHAP algorithm is applied and the perturbation maps for 2D are outputted. The green regions
highlight the regions which contribute positively to the given class, whereas the red regions the negative
contributions for the given class. This pipeline generates explanations that can be used both for debugging
purposes but also for visualization purposes and understanding of the model.

15

https://www.zotero.org/google-docs/?WYhv70


3. Results

This section shows the results from the explainability methods as well as some biases which could

be noticed. Also, the 3D heatmaps are evaluated compared to annotated masks by experts. In the

end, the evaluations and results of the backend models are presented. The outputs discussed in

this section, and other more examples, are uploaded on the GitHub repository of this project.

3D explainability results

The generated output is in the form of 3D heatmaps with normalized voxel intensities saved as nifti

files. An example is shown in figure 3.1. The scan number is shown on the top left in each image.

In the jet colour map, the “warmer” (red, orange) the colour, the higher the gradient. Higher

gradients signify regions of interest with a greater contribution towards the decision of the model.

Studies starting with 02XX have moderate COVID-19 pneumonia cases, those with 00XX have no

COVID-19 present, and 11XX are severe disease cases. A lot more of these examples and

visualizations are available on the GitHub repository of this project.

Figure 3.1 - A visualization of a slice of a 3D heatmap for study_0260 processed to 128x128x64 in ITK snap
with the Jet colour map. From left to right (axial, coronal, sagittal view). The axial heatmap is rotated by 90
degrees in this and the other jet map visualizations. In this scan, it is apparent that there is a region of
interest and activation in the patient’s left lung. There are some activations in the right lung, but these are not
that evident in these slices.

The heatmaps are more intuitive for humans when they are combined with the original scans and

not just the heatmaps themselves. Figure 3.2 visualizes jet colour heatmaps with their ct scan slice

accordingly.
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Figure 3.2 - 3D heatmap slices with their 2D counterparts. Here there is an activation around the right lung of
the patient, but also small activations are present in the lower part of the left lung.

The scans can be also visualized with a different colour map. Viridis was also chosen in this project

because of its better representation of the colour differences of slight gradient changes. A key thing

to note is that all heatmaps when presented in 2D are slices of a 3-dimensional heatmap. This

seems less intuitive to the eye compared to directly generated 2-dimensional heatmaps which are

used in most of the implementations of gradient-based algorithms. These heatmaps should be

looked at not as exact localizations of COVID-19 lesions but as “clouds” which go “above” and

“below” the presented slices. One example to illustrate this is in Figure 3.3 where the slices moving

from the abdominal towards the thoracic area are visualized.

Figure 3.3 - A set of 40 slices of study 1109. Moving from the abdomen (upper left corner) towards the
mid-region of the chest (bottom right corner) the activations around the left lung gradually increase. This
illustrates the “cloud” concept of the 3D heatmaps.

This can create a situation where activations can be viewed on one slice but not due to some

characteristic of the image at that given slice but as an effect from a feature above or below the

visualized slice. That is why 3D heatmaps might be less intuitive for humans. Figure 3.4 shows 3D
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heatmaps of a severe COVID-19 slice by mapping the activations opposite of the dominant class.

This is to show that Grad CAM can visualize counterfactual examples meaning any class can be

visualized if the backend model was for example classifying multiple classes. The higher the visual

difference between classes the more noticeable these maps are.

Figure 3.4 - This is study 1109, from the CT4 subset with severe ground glass opacifications and
consolidations. From the middle subplot, it can be seen that the activation for the NORMAL class is around
the lungs, which signifies that the details in the lungs are what contribute to the class ABNORMAL which is
present in this image.

Figure 3.5 shows a COVID-19 scan from the subset of NORMAL scans CT0. Here the activation

for the NORMAL class is mostly centred near the spine of the scan.

Figure 3.5 - A NORMAL CT scan without the presence of COVID-19. It is noticeable how the activations are
around the spine of the scan and how confined around these regions they are compared to the evidently
ABNORMAL scan of Figure 3.4.

The 3D explainability offers some insights into biased decisions by the model. This is one of the

advantages of having an explainability method as part of a machine learning deployment pipeline.

Figure 3.6 highlights some recurring biases that were noticed throughout some portions of the

data.
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Figure 3.6 - The figure shows examples of biases that arise in some of the data. The leftmost heatmaps
show high activation in the part of the image near the table of the CT scan. The same view but from a
different viewpoint is shown in the middle picture. This points to the fact that the model can concentrate on
certain artefacts in the image caused by the sensors or apparatus of the CT scan machines. Another
example is the rightmost picture which after some thresholding, shows a rippling artefact on top of the
patient. This is usually a cover or blanket used for patients when the CT scans are taken. Such artefacts in
the data can cause biases and can skew the backend model.

Evaluation of heatmaps

Evaluation of these heatmaps is a difficult task as there is an element of perceived subjective

value. One way of evaluation is using manually annotated masks. The MosMed dataset contains a

small number of scans that have been manually annotated with binary pixel masks depicting

regions of ground-glass opacity and consolidation as regions of interest. We generated overlays of

the expert’s annotations and our heatmaps to understand the overlap and how our heatmaps

correspond to the expert annotators. Figure 3.7. (a) shows this. Tables 3.7. (b) and 3.7. (c) show

the similarity between our activation mask and the mask annotated by experts. They are quantified

using the Dice coefficient (F1-score) and MSE (Mean square error). Different thresholds of

binarization were used (Lower MSE and higher Dice coefficient mean greater similarity).

Figure 3.7. (a) - Manually annotated regions of interest that contain COVID-19 signatures study 0255 (left)
and study 0258 (right). Each CT scan has the appropriate overlaid heatmap with the blue crosshair placed at
the same point. The coarse red pixels signify the expert’s annotations and the jet is our output. From the
left-most pair, it can be seen that the model correctly overlaps with the expert’s annotations and is more
responsive to consolidations. The ground glass opacities are usually more dispersed and are not big
connected regions. Our heatmap activates on consolidations. In the right pair, it can be seen that the
heatmaps activate on the consolidation in the scan, however with less intensity due to the artefact bias which
generates high-intensity activations. These insights open the way for non-max suppression and heatmap
intensity value casting for further improving and debugging the model.
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Study ID: study_0255 study_0256 study_0258 study_0259 study_0260 study_0265

Threshold of
binarization is: >0.7
(Red/ Dark orange)

MSE:
0.00277
DICE:
0.95435

MSE:
0.00321
DICE:
0.95294

MSE:
0.0002
DICE:
0.995

MSE:
0.00047
DICE:
0.97742

MSE:
0.00136
DICE:
0.95453

MSE:
0.00226
DICE:
0.97168

Table 3.7. (b) - Both masks were binarized and resized to the same format. The threshold used for the
intensity was above 0.7 for our heatmaps. This way only the highest activations are preserved. Then the two
masks are added and the region of overlap is compared to the experts annotated binary mask. PSNR, MSE,
and SSIM are calculated. These calculations give a quantified result of the similarities between our maps
and the experts. However, this is not a fully accurate technique as there can be discrepancies with sizing,
dimensions, and choice of backend model. This would be ideal for a segmentation task, but the role of the
heatmaps is not to segment COVID-19 but to offer an understanding of model behaviour. Nevertheless, this
approach offers consistent quantified metrics but needs to be coupled with visual feedback for a more
thorough evaluation.

Study ID: study_0255 study_0256 study_0258 study_0259 study_0260 study_0265

Threshold of
binarization is:
0.3 - 0.7
(yellow/orange)

MSE:
0.00017
DICE:
0.99554

MSE:
0.00105
DICE:
0.97931

MSE:
0.00001
DICE:
0.99878

MSE:
0.00012
DICE:
0.99359

MSE:
0.00039
DICE:
0.98505

MSE:
0.00124
DICE:
0.98663

Table 3.7. (c) - Both masks were binarized and resized to the same format. The threshold used for the
intensity was between 0.3 and 0.7 for our heatmaps. These results lead towards the assumption that the
heatmaps are affected by high peaks (caused by biases or artefacts) and the real lung abnormalities are
highlighted in the middle to higher ranges. This paves the way for further development of models with
regions of interest, multiple classes for specific lung abnormalities, and max-suppression of images.

2D explainability results

In this subsection, the results from the 2D explainability are presented. Firstly, LIME is used just as

a demonstration ( medium example by Cristian Arteaga with different inputs ), and afterwards,

SHAP was implemented with a 2D pneumonia detection backend model (the inference is on the

2D slices, the 3D classification is not part of this section). Figure 3.8 and Figure 3.9 present demo

versions of LIME and SHAP with arbitrary classes and backend models. Figures 3.10 and 3.11

depict 2D explainability with SHAP using an appropriate pneumonia detection backend model. The

2D slice used is an example of moderate severity, but any 2D slice can be used.

Figure 3.8 - A LIME prototype demo example.
This example is tested on a model that recognizes
objects, not a specific disease. In order to
practically use this approach, a specific model
should be trained that recognizes a relevant class
(e.g pneumonia). This was implemented using a
“random” backend model just to test out the
explainability technique.
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Figure 3.9 - A SHAP prototype demonstration example with ImageNet classification model. The top 3
imagnet classes are chosen (nematode, wash bin, cup) and a Superpixel segmentation algorithm with a low
number of segments is chosen. This demonstration was modified in Figures 3.10 and 3.11 to include a
backend model that recognizes pneumonia.

Figure 3.10 - A SHAP 2D explainability using a pneumonia detection backend model. This model recognizes
two classes: NORMAL and PNEUMONIA, however a multi-class backend model that detects multiple chest
conditions can be also used. The colour green is indicative of a positive influence of a given image patch on
the class. Accordingly, red patches are indicative of a positive influence on the second class. Since the
problem is binary, the generated images are complementary to each other.

Figure 3.11 - A SHAP 2D explainability using a pneumonia detection backend model. The difference to figure
3.10 here is that there are more generated superpixels in the image segmentation which offers insights to
smaller patches of the image. The number of superpixels can also be altered to include a different number of
patches. The higher number of patches means that the insights can be more localized now, compared to
3.10. This technique can be used to segment regions of interest for further investigation by engineers or
even other explainability techniques.

Backend models results

2D Backend - model architecture, training, and evaluation
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The model takes an input of (224,224,3), follows the VGG16 model with the added batch

normalization layers and 2D separable convolutions. The model is trained for a binary classification

task. The dataset is divided into three sets: 1) train set 5223 images 2) validation set 16 images

and 3) test set 624 images. The test set for external model evaluation is from the same dataset but

an unseen section of the data. The remaining imbalance of the data (not solved by the

augmentation) is corrected by adding class_weight={0:1.0, 1:0.4} for the classes when calculating

the loss function. The model was trained for 20 epochs and the training and validation curve are

shown in Figure 3.12.

Fig 3.12 - The blue graph shows training accuracy
and the orange validation accuracy. The sudden
drastic differences in validation accuracy might be
due to the small size of the validation dataset.
Due to the small size, there are really easy and
really difficult examples for the mod

The model achieves a 98% training set accuracy, however only 70% accuracy on the testing set.

Using the confusion matrix generated, the model has a high recall in multiple training sessions with

different random seeds (0.95 - 1.00) and a recall between (0.68 - 0.80). Precision and Recall

follow a trade-off as they cannot both simultaneously increase. The acceptable trade-off should be

dependent on the task at hand. In the case of explainability methods, this is not a key concept but

is important to document the model behaviour. In figure 3.13 the confusion matrix of the model is

given on the test set of 624 images.

Figure 3.13 - It can be seen the level of false
negatives is really low but this comes at a
sacrifice of the overall accuracy and the high
number of false positives

Some tests were done on higher input resolution images with more details preserved. Then the

overall accuracy improves, however the number of false negatives increases. This is further proof

of the Precision/Recall tradeoff mentioned before.
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3D Backend - model architecture, training, and evaluation

The architecture is based on the 3D CNN architecture (Zunair et al., 2020). The evaluation of a 3D

convolutional neural network (CNN) to detect viral pneumonia in CT scans is presented here. 3D

CNNs are useful for learning representations for 3D data, as they take as input a 3D volume or a

series of 2D slices. It is worth noting that the sample size is quite small (200), and random seed is

not used. As a result, some variation can be expected in the outcomes. The complete dataset,

which includes over 1000 CT scans, is available on the dataset link provided at the beginning of

this paragraph. The authors of the Keras example attained 83% validation accuracy using the

entire dataset. In both situations, there is a 6-7% variation in the performance of the classifier.

Three versions of the model were saved, each with different accuracy on unseen data from the

same dataset. The one used for the explainability pipelines has an accuracy of 75% on the

validation set in the best training epoch (using early stopping). The accuracy curves of our training

are shown in Figure 3.14

Fig 3.14 - (Left) Model loss in training (blue) and on validation data (orange).
(Right) Model accuracy in training (blue) and on validation data (orange).
The X-axis is the number of epochs.

An evaluation with a “conventional” confusion matrix for binary classification was not used here

because of the varying difficulties of the subsets in the data. This means that choosing different

severity subsets for the positive test class would give varying confusing matrix results. This is also

noticeable with the validation test data. If it was predominantly from the subset CT3 (which has

more advanced cases of COVID-19) it would be easier for the model to detect them compared to

CT2. If the validation set was predominantly from CT1, the validation accuracy would have

decreased. Table 3.15 shows an analysis of the model tested on each severity subgroup from the
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full MosMed dataset (not the full subset, but several scans from each subset were used). For CT4

there were only a few examples available and the model correctly predicted all of them.

Subset (severity) CT0 (normal) CT1(mild) CT2 (moderate) CT3(advanced)

No. of scans 100 100 125 45

Accuracy 86.0% 32.0% 50.4% 82.9%

Table 3.15 - Backed model evaluation on subsets with varying severities

4. Discussion

The visualizations from our results show that certain biases and characteristics of both the models

and the data can be identified with the help of the explainability pipeline. Adding to this, the

analysis of the backend models and their performance helps in shaping up the understanding of

the decision making of these “black box” models. This section will discuss the drawbacks of the

methods and experimental design with possible reasons, solutions, and mitigations. Furthermore,

the argument about the impact and importance of this work concerning the current trend in medical

machine learning imaging will be stated.

Strengths and weaknesses of the methods

When using explainability methods the explanations must be related to the parameters the model

has learned during training. In (Adebayo et al., 2020) and (Nie et al., 2020) gradient-based models

are tested by doing model parameters and data randomization. The authors of (Adebayo et al.,

2020) have tested various gradient-based explainability techniques and Grad CAM, the method

used in this project, passed their randomization tests. The quick breakdown of their experiment is

shown in figure 4.1.

24

https://www.zotero.org/google-docs/?4tSM1x
https://www.zotero.org/google-docs/?cztMjp
https://www.zotero.org/google-docs/?XoQQRy
https://www.zotero.org/google-docs/?XoQQRy


Figure 4.1 - Each row corresponds to a different gradient explainability mapping method, and the
randomization gets bigger from top to bottom layers. It is expected that the further the randomization, the
more the explanation will break. If that is not the case, the authors infer that those models are not related to
the trainable parameters of the model and act effectively as edge detectors.
Source: Figure 2 from (Adebayo et al., 2020)

These findings suggest that although Grad CAM might not be the most precise (it is not a

COVID-19 segmentation tool) and visually convenient method, Grad CAM can offer explanations

that hold more value, compared to other similar more visually “appealing” techniques.

One drawback of Grad CAM methods is their bad differentiation of multiple occurrences of the

same class (Chattopadhyay et al., 2018) in an image while saliency methods (Simonyan et al.,

2014) are entirely class non-discriminative. Class differentiation is improved in Guided Grad CAM

(Selvaraju et al., 2020). However, Guided Grad CAM has its faults as mentioned in figure 4.1.

Another drawback (besides class differentiation) that inspired Score CAM (Wang et al., 2020) to

include perturbation based explainability techniques is the false confidence of the Grad CAM

models. They claim that activation maps with higher weights do not lead to more decision-relevant

regions. Regions highlighted with smaller weight may contribute more to the class confidence

score. This is explained in Figure 4.2 using a passage from their paper.

Figure 4.2 -(1) is the input image, (2)-(4) are generated by masking input with upsampled activation maps.
The weights for activation maps (2)-(4) are 0.035, 0.027, 0.021 respectively. The values above are the
increased on-target score given (1)-(4) as input. As shown in this example, (2) has the highest weight but
causes less increase on-target score. Source: (Wang et al., 2020)

Some possible improvements on the class contribution issue can be seen in (Sattarzadeh et al.,

2021). In this project, instead of implementing perturbation based explainability as part of the

gradient-based method like mentioned, the perturbations using SHAP and LIME are implemented

on 2D slices. This tackles the drawback of Grad CAM but also offers a different perspective and

versatility of the explainability pipeline. It is also noteworthy to mention the influence of the backend

models. A more accurate backend model and a different architecture would lead to different 3D

heatmaps. Although the model works with any convolutional network, the visual results may vary.

Many of the implementations of Grad CAM (mentioned in the introduction section) do 2D
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explainability using multi-label classification models such as Xception for example (Chollet, 2017).

Although this does not prove, it possibly implies that Grad CAM based methods are suited better

for object localization with multiple possible classes in 2D (like ImageNet or MNIST for example)

unlike the binary classification tasks in 3D in this project. Additionally, the visual intuition in 3D is

different to 2D heatmaps as explained in the Results section.

Knowing all of this about the 3D explainability, it should not be expected of 3D Grad CAM to exhibit

equal results to 2D explainability, and even with an imperfect model, there is a lot to learn.

SHAP is a 2D explainability technique that has its downsides too. Although it offers a theoretical

basis for its approach, it has some mathematical and human-centric issues as explained in (Kumar

et al., 2020). In (Fernández-Loría et al., 2020) besides the other drawback mentioned, there is an

analysis of counterfactual examples, where an important feature for the model might have low

SHAP scores. The examples from their work are in the area of law and finance, but the same

principles apply in medical applications. Another problem of LIME is that their solutions are not

unique, meaning that re-running the model multiple times might yield similar but non-unique

solutions. A key issue with perturbation techniques like SHAP is the choice of image patches. It is

impossible to choose the “best” number of image patches as this choice is also subjective. The

explainability being dependent on the backend model is also an issue here. For these reasons,

SHAP and LIME are not advised to be used on their own. This is why we chose to combine these

techniques with other explainability and pave the way towards human-centred and versatile AI

systems. Explainability in general has an issue of evaluation and validation because they naturally

involve a subjective human-centred design. Many of the mentioned papers offer survey-based

approaches for evaluation usually combined with some quantitative metrics (similar to Dice

coefficient in segmentation tasks). Another question to pose is “How much explaining is enough to

say that something is an explainable AI system?" This is determined by the extent of the applied

scenario. As long as something can be learned from the explanation - the explainability is useful.

The explainability pipeline can work with other backend models too as long as they are based on a

convolutional neural network. Other implementations of these algorithms are available, which with

some adjustments can offer explainability for other machine learning tasks beyond convolutional

neural networks. The SHAP explainability paper (S. Lundberg & Lee, 2017) highlights some of
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these possibilities while others are well documented in the official SHAP python package

documentation.

Impact concerning other literature and novelty

Explainability components are becoming instrumental in building AI systems. Full explainability AI

systems and assistive workflows are being designed (Spinner et al., 2019), (Sacha et al., 2019)

while current deep learning methods for COVID-19 have explainability components (Wu et al.,

2021) and (Nayak et al., 2021). The repercussions of AI systems have been mostly studied in law,

but recently similar studies (Banerjee et al., 2021) have uncovered that some COVID-19 detection

methods can detect the patient’s race just by looking at chest scans. Although this study has not

been peer-reviewed, model decision explanations would still be useful in such scenarios. The

novelty of this project comes not only from the 3D explainability with TensorFlow and Keras but

also from the use case of explainability. A survey of COVID-19 imaging detection methods was

released by (Roberts et al., 2021). They have identified that out of 2212 COVID-19 imaging

detection models, none are sufficient for clinical use due to methodological faults and biases. In

their conclusion, they offer improvements such as “(1) informing the clinician of which features in

the data most influenced the prediction of the model, (2) linking the prognostic features to the

underlying biology and (3) overlaying an activation/saliency map on the image to indicate the

region of the image that influenced the model’s prediction”. The pipeline in this project tackles and

contributes towards each of the 3 improvement suggestions.

Conclusion

The failure of COVID-19 imaging research to translate to applied clinical settings is an alarmingly

worrying fact for the whole medical imaging field. Even more so, for urgent and impactful medical

emergencies like COVID-19. It is of the highest importance to address these issues when building

AI systems. By confirming the hypotheses and realizing the aims, the project’s explainability

pipeline tackles key concerns and is a step in the right direction towards building AI systems.

Although it has its downsides and should not be used solely for high stakes decisions, It helps in

understanding model decision making to certain lung characteristics associated with COVID-19,

data and model biases. The explainability is not only for debugging purposes but paves the way for
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AI systems that would be: applicable in practice, human-centred, and trustworthy towards multiple

stakeholders in the development of AI systems.

5. Future work

A deep understanding of metrics for evaluating explainability methods would be useful as the

explainability techniques become more and more used. An approach of combining subjective and

quantitative metrics should be explored. Also, if more annotated data for specific lung

abnormalities is available, it can be utilized to improve the contextualization of the explanations.

A potential explainability technique that could be added to the pipeline is Neural-backed decision

trees (Wan et al., 2021). This method tries to make deep learning models interpretable rather than

explain the “black boxes”. With some alterations they make neural networks work as decision trees

not sacrificing accuracy for interpretability. To achieve this, Instead of the last linear layer, a

surrogate loss and differentiable sequence of decisions are added. Although there have been

proven advances in explainability, more research is needed on the effect of these methods on the

end-users, especially in medical environments with patients and medical professionals. This is

recognized as an issue in the conclusion of (Singh et al., 2020). The efforts of this project could be

extended to aid this issue by assessing the quality of the outputs through both qualitative and

quantitative means. Lastly, this project can be further developed into a full Python package for the

convenience of use and versioning (from a software development aspect).
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Appendix A

Details on the Github repository

The code files are available at: https://github.com/fm1320/ICL/tree/main/AstraZeneca
There are multiple scripts and multiple folders which have different generated outputs in them.

“Scripts” folder has the python scripts that are
used for different tasks in the project
“Similarity scores” has the binary maps from
our masks and the expert’s masks as well as
the full version of the expert’s masks
“Ct_scan_examples” has examples of a full
resolution CT scan
“Outputs” has screenshot visualizations of
some scans and their activations, overlays,
as well as 3D nifti files of the class activation
maps
“trained_model_weights” the trained model
weights for the 3D classification
“Workflow.drawio” is a diagram of the
explainability pipeline
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